教育部 111 學年度中小學科學教育專案期中報告大綱

計畫名稱: 校園餘菜水族課程研發及推廣計畫(三)

主 持 人 : 陳柏羽 電子信箱: a0922710685@gmail.com

共同主持人: 黃惠汝執行單位: 礁溪國中

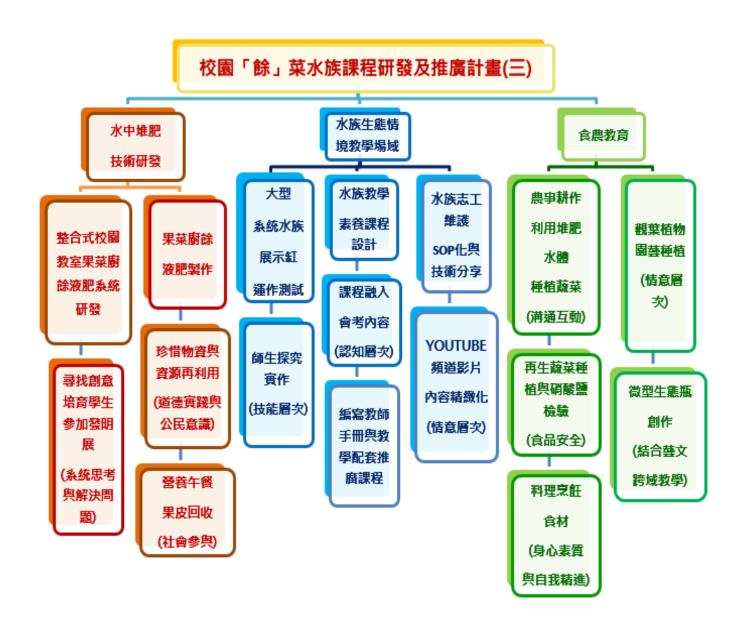
一、計畫執行摘要

- 1.是否為延續性計畫? (請擇一勾選) ☑是 □否
- 2.執行重點項目 (請擇一勾選):
 - □ 環境科學教育推廣活動
 - ☑ 科學課程教材、教法及評量之研究發展
 - □ 科學資賦優異學生教育研究及輔導
 - □ 鄉土性科學教材之研發及推廣
 - □ 學生科學創意活動之辦理及題材研發
- 3.辦理活動或研習會等名稱: 魚菜共生課程、水中堆肥研習
- 4.辦理活動或研習會對象:學校教師
- 5. 参加活動或研習會人數:12場,150人
- 6. 参加執行計畫人數:6
- 7. 辦理/執行成效:

本校舊有的魚菜共生系統常因宜蘭冬季寒流低溫造成魚隻死亡,以致 系統運作瓦解。

本計畫將舊有系統修正為「水族生態教學場域」與「蔬果廚餘系統」, 可以保存原本戶外養的魚進入室內「水族生態教學場域」成為水族活體教 具庫。植物種植養分來源則來自「蔬果廚餘系統」。

改裝系統與成立水族教室的過程皆由師生共同協力建置,過程中培養學生動手實作的能力,也將發展歷程中的內容編寫成有系統的課程教材。 學生利用建置過程中,發展「微型底濾培菌魚菜共生系統」榮獲世界青少 年發明展銀牌獎,培養學生探究實作能力。


「蔬果廚餘系統」所製作出的蔬果液肥,富含豐富養分與活菌,使植物成長更為健康,也成功解決校園生廚餘的問題。

二、計畫目的

1. 透過問題解決的教學模式,師生合作改良學校現有「魚菜共生系統」運作模

式,設計出符合宜蘭地區適用的魚菜水耕設備

- 2. 研發改進「水中分解蔬果廚餘堆肥」技術與測量方法
- 3. **建構「水族生態情境教學場域」**成為校園學習生態系的理想模型與活體教具室,建置過程中培養成學生「做、用、想」的能力
- 4. 開發「校園餘菜水族校本課程」教材與教法,結合食農教育,建立學生的正確飲食觀,落實完整配套教學
- 5. 校內成立教師共同備課社群,彼此分享教學資源與精進教學能力
- 6. 推廣「校園餘菜水族校本課程」教學配套與技術提供他校參考

三、研究方法

第三年 研究計畫				
研究目的	步驟	成效評估	預定時間	
水族生態教學情境場域	1. 資料蒐集、水族專家技術諮	1. 培養本校師生規劃室內	110年7月	
整體規劃	詢	水族系統的能力	~110年9月	
	2. 校外水族館參訪(暑期縣外	2. 培養學生深入了解複雜		
	水族館校外教學)	水族飼養系統功能與設計		
	3. 師生規劃設計大型系統循			
	環缸			
生物實驗室內水族展示	1. 水族循環系統缸建置(共 4	1. 了解水族與水電材料規	110年9月	
系統建置	層)	格,並建置相關資料	~110 年 12 _日	
	2. 建置第四層頂部生化過濾	2. 培養本校師生規劃與建	月	
	區與第一層底部水草栽植區	置室內複雜水族循環系統		
	工程	的能力		
		3. 驗證利用水草優化自來		
		水成為養殖水的能力,擁有		
		節省水資源與生化藥劑的		
		優點,研究成果可提供水族		
		館參考		
改良「水中分解蔬果廚	1. 進行造水與硝化菌種培養	掌握水中堆肥重要參數	111年1月	
餘堆肥」技術	2. 觀測與掌控蔬果廚餘分解	(碳氮比、溶氧量、溫度)	~111 年 3 月	
	下水生系統的生態平衡			
	3. 探討堆肥分解時水中消耗			
	的氧氣與有效率溶氧的方式			
	4. 探討水中堆肥最佳碳氮比			

修改果菜廚餘供肥	1. 師生動手實作,動腦解決問	1. 長時間追蹤觀察以改進	111年4月
水耕植栽系統	題	│ │「水中堆肥多重過濾系統」	~111 年 6 月
	2. 培養學生安全使用工具技	運作功能,修正過去施工缺	
	能	失部分與培養修護保養技	
	3. 了解過去施工缺失部分	術	
		2. 學生研發「自我清洗」功	
		能的過濾系統,並鼓勵學生	
		以参加宜蘭縣青少年發明	
		展	
		3. 建置過程完全由學生動	
		手操作,養成學生「做、用、	
		想」的能力	
產出蔬菜硝酸鹽	探究控制碳氮比後的堆肥水	驗證水中堆肥的可行性	111年6月
安全檢驗	體是否可以種植出硝酸鹽含 量低的蔬菜		~111 年7月
食農校本課程開發	1. 食農課程教材設計編寫	1. 實施飲食教育和農事教	110年9月
	2. 教學歷程與心得記錄	育課程設計	~111 年7月
		 2. 培養學生 建立「食當地、	
		食當季」的正確飲食觀	
教學社群共備課程	1. 每個月領域教師開會討	1. 建立完整溝通模式	110年9月
	論,修正課程內容	2. 建置教學模式與教學資	~111 年7月
	2. 課程反思檢討	源	
		3. 編寫教師手冊與教學配	
		套	
主題教學成果分享	1. 全校性教師研習	1. 全校教師了解主題課程	111 年 7 月
校內教師研習	2. 研發成果分享	架構與內容	
		2. 建立全校校本食農課程	
		教學共識	

四、研究執行項目

目標項目	執行完成項目說明
水族生態教學情境場	1. 水族教室建置資料蒐集與文獻探討
域整體規劃	2. 校外水族館勘查與水族專家技術諮詢
	3. 與總務處協調,決定「水族生態教學情境場域教室」
	場地位置與水電相關問題
	4. 師生合作繪製系統設計圖
	5. 完成大型系統缸完成硝化細菌培養
	6. 完成大型系統缸過濾方式優化調整
	7. 完成水族生態教學場域情境佈置
	8. 逐步建立水族生態教室維護 SOP,並持續「滾動式
	修正」
生物實驗室內水族展	1. 大型水族循環系統缸不銹鋼架架設
示系統建置	2. 建置第四層頂部生化過濾區與第一層底部水草栽
	植區工程
	3. 魚缸 PVC 循環管路配置完成
	4. 系統魚缸大型打氣馬達調節供氣裝置安裝完成
	5. 建立大型系統缸養殖維護 SOP
	6. 建立「水草過濾系統」
改良「水中分解蔬果廚	1. 資料蒐集、堆肥專家技術諮詢
餘堆肥」技術	2. 師生合作繪製改良式過濾系統設計圖
	3. 製作小型「水中堆肥過濾系統」模型開始運作,成
	為學生發明展作品,並榮獲世界青少年發明展銀牌獎
	4. 完成小型「水中堆肥過濾系統」中系統過濾槽與沉
	澱槽運作優化調整
	5.「重力吸引型」過濾系統開始設計完成,將於下年

	度科教計畫中執行,並首先運用處理教師辦公室蔬果
	廚餘
修改果菜廚餘供肥	1. 搬遷陽台大型魚菜共生系統
水耕植栽系統	2. 課程教學中已培養學生安全使用工具的習慣與動
	手操作能力,學生熟悉水管裁切與接管、電鑽使用、
	火槍焊孔、焊接電線等技能
	3. 已完成搬遷後水電供給模式
產出蔬菜硝酸鹽	學生已學習檢測方式與熟練檢測程序
安全檢驗	
食農校本課程開發	1. 已完成主題教學課程盤點,相關教學主題,已融入
	會考內容
	2. 教學主題完成 108 課綱中學習重點(學習內容、學
	習表現、核心素養)
	3. 已開發 STEAM 教學架構整合現有教學主題
	之探究實作課程教材
教學社群共備課程	已舉辦四次教學共備研習與相關觀議課
主題教學成果分享	1. 已將教學成果上傳校內雲端硬碟
校內教師研習	2. 持續拍攝 youtube 影片,供各界教師參考
	3 已建立社群內觀課紀錄模式
	4. 已建置完成雲端教學資料庫

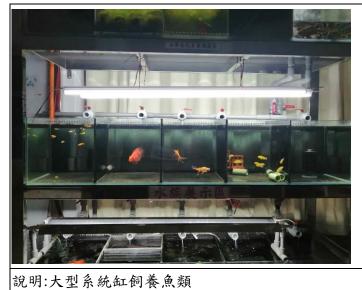
五、研究成果

(一)水族生態教學場域大型系統缸開始運作,飼養各式魚種與水草,並建立 立 創新生物過濾系統,結合魚菜共生概念

水族生態教學場域可分為「中型」與「大型」兩組系統缸,「中型系統缸」 為去年計畫建置,今年完成「大型系統缸」建置,並於今年2月開始運作。

目前將「中型系統缸」定位於新進魚隻的隔離檢疫與現有生物的疾病治療, 採每個魚缸獨立過濾系統,因此不會有交互傳染的問題。

「大型系統缸」最頂端為整體系統缸三層的過濾層,目前設計為生化過濾區,並且種植水草,利用水草生長消除水中硝酸鹽類,並設置一區兩棲動物飼養區,使排泄量大的烏龜也能生活於乾淨的水體之中。下面三層分別飼養金魚、斑馬魚、神仙魚、慈鯛科等不同魚種。使學生能更貼近觀察不同的水生動物。達到「活體教具庫」的功能。


大型系統缸運作

說明:大型系統缸開始運作

說明:隔離缸與極火蝦水草繁殖缸

說明:大型系統缸飼養魚類

說明: 大型系統缸最上層採水草生化過濾

說明:大型系統缸水草過濾,植栽開花

水族養殖

說明:新進魚隻隔離缸(慈鯛科:非洲王子)

說明: 新進魚隻隔離缸(金魚:朝天眼)

說明:生病魚隻治療缸(白點病)

說明:水晶蝦飼養缸

說明:螢光斑馬魚養殖

說明:本實驗室成功繁殖出螢光斑馬魚

(二)系統缸水耕育苗與水耕蔬菜

我們發現在大型系統缸的出水口放置滴流盒內置生化棉,可以成功孵化菜苗種子,比起傳統水耕孵化方式,需要將種子一顆顆放入孵化棉中,成功率更高。

孵化後的菜苗可以一棵棵分開種植,比起直接灑種,更能節省種子,也能讓 菜苗成長得更好。因此<u>系統</u>缸可以為育苗的好工具。

利用系統缸孵化的菜苗,移植是陽台魚菜共生區,如下列相片所示,蔬菜成長快速健康,也種植蝶荳花、辣椒、秋葵等農作物。

系統缸水耕育苗

說明:利用大型水族系統缸出水口孵化蔬菜種子

說明:利用大型水族系統缸育苗

水耕蔬菜

說明:萵苣與皇宮菜

說明:各式蔬菜缸種過程

說明:蔬菜成長過程

說明:蔬菜在蔬果液肥的養分供應下,大豐收爆棚

(三)水中堆肥分解效率高,產生豐富營養液肥使植栽成長健康

我們建置了大型蔬果廚餘水中堆肥缸,透過層層分解,每周皆能將10公斤 的蔬果廚餘分解完成,產生營養豐富的液肥。液肥用來澆灌植栽與農作物,植物 成長非常健壯,對於病蟲害的抵抗也有很好的表現。

蔬果廚餘水中堆肥

說明:彩葉草土耕容易受病蟲害影響

說明:大量蔬果堆肥情形,經兩周後可產生營養液肥

說明:水耕區活菌培養,健壯鮮豔

(四)進行再生蔬菜栽植,培養學生資源再利用與知福惜福的觀念

利用烹飪課切除剩下的蔬菜部位,回種魚菜共生系統,可以讓學生看到植物 營養器官的繁殖,與一般生物實驗不同之處在於魚菜共生系統為「活水流動」不 必換水,成長迅速,根部氧氣充足,成長更為健壯。

利用學生家沒用完的紅蔥頭,利用室內大型系統缸繁殖珠蔥,採收後的珠蔥 在實驗室製作蔥蛋,也成為另一種食農教育。

再生蔬菜

統繁殖珠蔥

說明:利用學生家沒用完的紅蔥頭,利用魚菜共生系 說明:利用學生家沒用完的紅蔥頭,利用室內大型系 統缸繁殖珠蔥

說明: 利用學生家沒用完的紅蔥頭,利用魚菜共生 說明: 珠蔥收成 系統繁殖珠蔥

說明:各式烹飪課切除剩下的蔬菜部位,回種魚菜共 說明:高麗菜回種後,一週後開花 生系統

說明:烹飪課用完的三星蔥回種魚菜共生系統

說明:三星蔥收成

說明:在實驗室利用採收的珠蔥製作蔥蛋

說明:吃到自己種的蔥,感覺更好吃

(五) 學生研發作品「微型底濾培菌魚菜共生系統」

本科教計畫有一部分在於培育對科展與發明展感興趣的學生,運用計畫提供的資源讓願意嘗試動手做的學生有一個發展的舞台。學生將所看到的大型魚菜 共生系統與多重過濾系統微型化,希望縮小為一般小家庭可以運作的尺寸,但是 微型縮小化是一件困難的工程,其中牽涉到的變因都必須更為精確地微調,學生 花了一年的時間終於完成此作品,準備參加世界青少年發明展。

學生研發

說明:學生花費一年時間研發整合式魚菜共生系統

說明:採背部隱藏式分流過濾

說明:自製免打孔改裝套件

說明:微型底濾培菌魚菜共生系統

(六)世界發明展全國賽參賽榮獲銀牌獎

學生經過一年的研發,經過初審與複審終於能參加 2021IEKY 世界青少年發明展,宜蘭縣學生能夠見識到全國性大型比賽,經過早上四位教授專業的評審後,下午時間為參賽隊伍相互交流。本校學生作品受到評審肯定,榮獲世界發明展全國賽銀牌獎。

世界發明展全國賽

說明:2021IEYI 世界青少年發明展

說明:世界青少年發明展準備過程

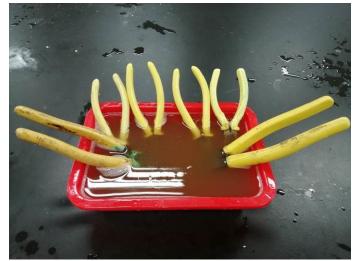
在型底 港 培 節 無 禁 共 生 条 統

說明: 世界青少年發明展準備過程

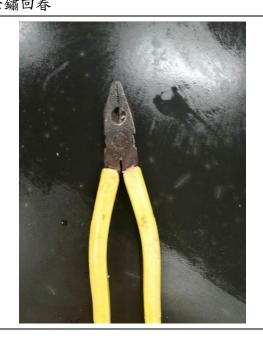
說明:參賽作品名稱「微型底濾培菌魚菜共生系統」

說明:世界青少年發明展參賽合照

說明:榮獲世界青少年發明展銀牌獎

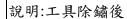

六、討論及建議

(一)培養學生動手實作能力,注重設備的保養與修復


本課程計畫為 STEAM 架構,強調學生自發性動手實作,在實作過程中,需要動用許多工具,因此<u>本教學相當強調對工具的愛惜與保養</u>,平日學生會將實驗室內工具進行除鏽保養,過程中運用物理性與化學性除鏽,也增加學生對化學藥品性質的認識與應用。

學生動手實作

說明:學生利用可樂、檸檬酸、小蘇打、鋁箔紙進行 說明:工具除鏽浸泡 工具除鏽回春



說明:工具除鏽前

說明:學生利用電焊筆在木板上刻字

說明:學生利用電焊筆在木板上刻字

說明:摔裂行動電源

說明:利用研缽壓碎營養口糧與泡麵

說明:滴入三秒膠後,進行研磨

說明:修復後更加堅固

(二)水族志工日常維護,建立 SOP 流程與培養責任感

利用午休時間培訓水族志工,傳承水族換水維護的經驗,希望在此過程中, 能培養學生負責任、愛整潔的習慣。

維護習慣的建立,對於平時在家少做家事的學生來說,需要一段很漫長的時間培養,因此本計畫課程採用讓學生從老師所教導的換水過程中,經過觀察、討論、修正等過程自己建立出 SOP 流程,成為實驗室培養新人志工的養成手冊,我們也發現建立了實驗室 SOP之後,學生出錯的機率降低,帶領學弟妹也更有方法與邏輯性,更可以從中找出一些過去的盲點,進而使工作流程更為有效率與順暢。

學生日常維護

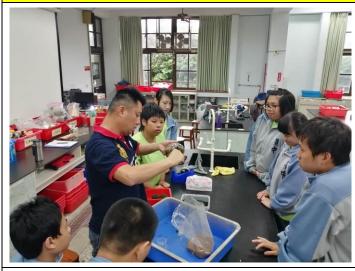
說明:學生平日系統缸換水

說明:學生平日依照 SOP 系統缸換水

說明:自製換水工具

說明: 自製換水工具

說明:利用吸取器吸取污泥


說明: 利用吸取器吸取污泥

(三)研發「水耕活菌生態瓶」,加入自製液肥,成為獨創微型無土栽植景觀

採集魚菜共生系統繁殖的觀葉植物,加入自製的蔬果液肥,搭配生化棉活菌技術,獨創「水耕活菌生態瓶」,不用擔心植物何時澆水,多久澆水一次,也不用擔心施肥問題。

學生改裝學校廢棄電腦螢幕與手電筒,成為 LED 植物照明燈,並利用廢棄 飲料瓶,搭配學校繁殖植物,成為低成本的生態教具。 由於沒有相關文獻可以參考,有關「自製的蔬果液肥」的濃度與成分比例,還需花時間研究,希望能在下一年度計畫中得到驗證與成果。

水耕活菌生態瓶

說明:水耕活菌生態瓶種植教學

說明:水耕活菌生態瓶種植教學

說明:苔蘚活菌生態瓶研發種植區

說明:苔蘚活菌生態瓶研發種植區

說明:赤玉土垂直壁造景前

說明:赤玉土垂直壁造景後

說明:學生發揮創意改裝 LED 燈具

說明:學生利用廢棄手電筒,發揮創意改裝 LED 燈具

說明:學生改裝 LED 燈具,生態瓶充滿生意盎然

說明:利用回收飲料罐改裝 LED 燈具可透過 USB 連接行動電源

說明:學生利用廢棄手電筒與螢幕改裝 LED 燈具, 生態瓶充滿生意盎然

說明:學生改裝 LED 燈具,生態瓶充滿生意盎然

(四)透過雲端硬碟資料與 youtube 頻道影片,疫情期間進行校外技術輔導

計畫主持人通常每月受邀 1~2 場校外研習,因疫情期間避免外出,剛好可以運用本計畫所拍攝的 youtube 頻道影片與雲端硬碟中的教學資料,透過 Google Meeting 視訊方式進行技術輔導,使有意從事此類課程計畫的學校有更多的學習機會。